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ABSTRACTThe proess by whih a ell senses and responds to its en-vironment, as in signal transdution, is often mediated bya network of protein-protein interations, in whih proteinsombine to form omplexes and undergo post-translationalmodi�ations, whih regulate their enzymati and bindingativities. A typial signaling protein ontains multiple sitesof protein interation and modi�ation and may ontain at-alyti domains. As a result, interations of signaling pro-teins have the potential to generate a ombinatorially largenumber of omplexes and modi�ed states, and representingsignal-transdution networks an be hallenging. Represen-tation, in the form of a diagram or model, usually involvesa tradeo� between omprehensibility and preision: om-prehensible representations tend to be ambiguous or inom-plete, whereas preise representations, suh as a long listof hemial speies and reations in a network, tend to beinomprehensible. Here, we develop onventions for repre-senting signal-transdution networks that are both ompre-hensible and preise. Labeled nodes represent omponentsof proteins and their states, and edges represent bonds be-tween omponents. Binding and enzymati reations aredesribed by reation rules, in whih left graphs de�ne theproperties of reatants and right graphs de�ne the produtsthat result from transformations of reatants. The reationrules an be evaluated to derive a mathematial model.
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1. INTRODUCTIONMany ellular responses to environmental signals are me-diated by networks of interating proteins that detet signals(e.g., ligands of ell-surfae reeptors) and transdue thesesignals into responses, suh as the release of stored fators,hanges in gene expression, and ell movement, prolifera-tion, di�erentiation, or death. After the introdution of asignal, the proteins in a signal-transdution network typi-ally undergo post-translational modi�ations (e.g., tyrosinephosphorylation), whih a�et their binding and enzymatiativities, and onurrently ombine to form a variety ofheterogeneous omplexes [1, 2℄. These omplexes, whih areoften transient and prominent in the viinity of the innerell membrane, regulate enzymati ativities, for example,by serving to o-loalize enzymes and substrates, whih isa ommon mehanism for ontrolling enzyme spei�ity [3℄.The number of protein omplexes and modi�ation statesthat potentially an be generated during the response toa signal is ombinatorially large and generally far greaterthan the number of proteins involved in signal transdution,beause signaling proteins ontain multiple sites of modi�-ation and may interat with multiple binding partners [4,5℄.There are at least two reasons to aount for all the pos-sible protein states and omplexes in a signal-transdutionnetwork, as numerous as these may be. First, most statesand omplexes may be unimportant, but in general, it isimpossible to determine intuitively whih are the importantones from knowledge of pairwise protein interations, whihis the usual level of detail available, even for a well-studiedsystem. Seond, the atalyti ativities of signaling proteinsare highly regulated by moleular ontext. For example, theativity of a protein tyrosine kinase (PTK) might depend onthe phosphorylation state of its ativation loop and its spei-�ity might depend on the proximity of a spei� substrate.Thus, we desire representations of signal-transdution net-works that preisely aount for the full array of possibleprotein states and omplexes implied by a given set of pro-tein interations. To make pratial use of these representa-



tions, one must be able to translate them into mathematialand omputational models, whih an then be used to in-terpret data, predit the behavior of a system, and designexperiments to test model-based preditions [6, 7, 8℄.A preise representation of a signal-transdution networkan be provided by a omprehensive list of the hemialspeies and reations in the network [9℄. However, this typeof representation is diÆult to omprehend, even for smallsystems, in that it obsures the underlying protein intera-tions that give rise to the hemial speies and reations.The list may also be quite long. A more omprehensibletype of representation, and one that is ommonly used, isprovided by a diagrammati interation map in whih pro-teins and their interations (or the funtional onsequenesof these interations) are indiated by labeled artoons andarrows. Formal onventions have been proposed for drawinginteration maps suh that they have preise meanings [10,11, 12, 13℄. However, interation maps tend to su�er froma tradeo� between preision and omprehensibility. Mapsthat are preise enough to have an unambiguous mathemat-ial interpretation may be no more understandable than alist of reations. On the other hand, ad ho heuristi maps,whih are more the norm, may learly illustrate ertain as-pets of a system but are ambiguous and lak a mathemat-ial interpretation.One way to ahieve a preise and understandable rep-resentation involves the spei�ation of a reation rule foreah type of protein-protein interation in a network [5, 8,14, 15, 16℄. In this approah, strings are used to representhemial speies and regular expressions are used to repre-sent groups of hemial speies with partiular attributes.Reation rules, or generalized reations, are written in thesame form as a hemial reation but regular expressionsare allowed. These string-mathing patterns identify groupsof hemial speies by indiating the shared attributes of agroup. Thus, the rules an be used to �nd, through stringmathing, the hemial speies among a set of speies thatqualify as reatants. The rules also de�ne transformations ofreatants into produts by providing a rate law and indiat-ing how strings representing reatants should be modi�ed toobtain produts. Thus, they are generators of reations andproduts, whih may inlude new speies. The result of ruleappliation is a list of hemial speies and reations impliedby the rules and the seed set of speies to whih the rulesare initially applied. This approah has been used to modelearly events in signaling by F�RI [14, 15℄, a prototypialantigen reognition reeptor of the immune system, and toderive preliminary models for an array of other systems [16℄.The number of rules that must be spei�ed is omparable tothe number of omponents of proteins in the network, whihis usually muh less than the number of hemial speies.Here, we extend the rule-based approah desribed aboveby de�ning onventions for using graphs to represent hem-ial speies and groups of hemial speies. The introdu-tion of graphs is a natural generalization of the string rep-resentation of Blinov et al. [16℄. With it, we gain the abil-ity to expliitly and systematially represent the onne-tivity of protein omponents in a omplex at the expenseof �nding graph isomorphisms, instead of simply mathingstrings, when applying reation rules. Below, we introduethe onventions of representation, present examples, om-pare graphial rule-based representation with formal dia-grammati representation, and briey mention the lassi-

al problems of graph isomorphisms that must be solved totranslate a set of rules into a model. The method of Blinovet al. [16℄ and ideas presented here will be elaborated inanother publiation [17℄.
2. METHOD OF GRAPHICAL REPRESEN

TATIONFigure 1 introdues a method of using graphs and graphrewriting rules, or graphial reation rules, to represent signal-transdution networks. We fous on signal transdution andprotein-protein interations, but the onventions of Fig. 1an be used to represent other types of ellular systems andbiomoleular interations, suh as geneti regulatory net-works and protein-DNA or protein-lipid interations. Themethod is also illustrated with examples spei� to the modelof Faeder et al. [15℄ (Figs. 2{5), a model for bivalent ligandinteration with a bivalent ell-surfae reeptor (Fig. 6), anda model onsidered in the review of Aladjem et al. [13℄(Fig. 7).
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Figure 1: Conventions of the graphial representa-tion.The method of representation was developed with the fol-lowing features of signaling proteins in mind. These pro-teins are generally omprised of onserved modular domains.



Some domains are atalyti. A PTK domain, for example,atalyzes the addition of a phosphate group to a tyrosineresidue of a protein substrate. Some domains are respon-sible for biomoleular reognition; protein interation do-mains reognize spei� types of sites in proteins and otherbiomoleules [2℄. For example, the Sr homology 2 (SH2)domain reognizes phosphorylated tyrosines in protein mo-tifs, suh as the immunoreeptor tyrosine-based ativationmotif (ITAM). The ativities of protein domains an be reg-ulated by post-translational modi�ations, whih are at-alyzed by signaling proteins. For example, the ativity ofa PTK domain an be upregulated by autophosphorylationof its ativation loop, and the aÆnity of an SH2 domain foran ITAM an be upregulated by PTK-mediated ITAM phos-phorylation. These modi�ations an be reversed (e.g., a ty-rosine an be dephosphorylated by a protein tyrosine phos-phatase). Binding events and onformational hanges analso a�et the ativities of signaling proteins. The hallengeis to aount for interations among moleules, eah poten-tially having multiple omponents, eah potentially havinga binding or atalyti ativity that depends on its bound,onformational, or modi�ation state, whih an vary.
2.1 Components, Internal States, and BondsThe elements of a graph are nodes, labels assoiated withthe nodes, and undireted and unlabeled edges that on-net nodes (Fig. 1). Nodes represent omponents (e.g., sitesand domains of proteins), whih may have multiple inter-nal states (e.g., phosphorylated or unphosphorylated), la-bels give the names of omponents and their internal states,and edges represent bonds between omponents. Here, welimit disussion to edges that are subjet to addition or re-moval in a graph rewriting step, i.e., bonds a�eted by sig-naling. Bonds onneting omponents that are una�etedby signaling are not represented expliitly. Internal statesare introdued as needed or desired to represent bound, on-formational, or modi�ation states of a omponent that arenot represented otherwise. As illustrated in Figs. 1, 2 and7, when a omponent is de�ned, it is assigned a name anda list of its allowed internal states (if any) is given.As disussed later, we will sometimes need to speify theonnetivity of a node, for example, to write a reation rulein whih a partiular omponent of a reatant must be un-bound. Here, we uniformly use an open (�lled) irle for anode that is unonneted (onneted) to an edge. A half-�lled irle is used for a node that may be either onnetedor unonneted to an edge. Other ways of speifying on-netivity are possible. For example, a speial node might beintrodued to represent an empty spae and onneted tonodes of omponents that are unbound.
2.2 MoleculesA moleule is de�ned as a set of omponents that an betreated as a unit (Figs. 1, 2, 6 and 7), suh as the om-ponents of a polypeptide hain or multimeri protein. Amoleule is represented graphially by a box surrounding aset of nodes that represents eah omponent of the moleule.Like omponents, moleules are assigned names, but here,we usually suppress these names to avoid lutter, beausemoleules an be distinguished by the shapes of their boxesor the names of their omponents. Names of omponentsare also suppressed in some ases. Names an be suppressedbeause we adopt the onvention that the omponents of a

moleule are represented at �xed relative positions within abox. These onventions for illustrating a model do not a�etthe underlying graph representation of omponents, bonds,and moleules. The internal states of a moleule and itsonnetivity to external omponents is determined by theattributes of the nodes representing its omponents. In ourexamples, every omponent is part of a moleule.
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2.3 Chemical SpeciesA hemial speies is either a single moleule having all ofits omponents fully de�ned or a set of onneted moleules(i.e., a omplex), with eah moleule in the set having allof its omponents fully de�ned. A omponent is fully de-�ned if its internal state is spei�ed and its onnetion withother omponents is spei�ed. If a omponent is bound toanother omponent, then the nodes representing the twoomponents are joined by an edge. An example of a hem-ial speies is illustrated in Fig. 1; others are illustrated inFig. 3. In general, a hemial speies is represented by agraph in whih nodes are partitioned into moleules, edgesonnet the nodes of omponents that are bound to eahother, and node labels indiate the partiular internal statesof those nodes that have multiple allowed states. There is ahemial speies for eah unique ombination of the possibleomponent onnetions and states in a system.
2.4 Groups of Chemical SpeciesGroups of hemial speies with spei�ed shared featuresan be de�ned by graphs that do not ompletely speify om-ponent interations and states, whih we all group rules or
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Figure 3: A set of partiular hemial speies in theF�RI model.group graphs. The interations and states that are spei�edde�ne the distinguishing features of a group. An example ofa group rule is shown in Fig. 1 along with a set of hemialspeies having features onsistent with the rule. In general,given a set of hemial speies, this group rule selets allhemial speies among the set in whih omponent B ofthe indiated moleule is in state pY. Beause the internalstate of omponent A and the onnetivity of B are unspe-i�ed in the rule, hemial speies seleted by the rule anhave di�erent states of A and di�erent bound states of B asshown. Additional speies, depending on the set of speiesbeing tested, ould belong to the group, as would be thease if omponent A was attahed to a binding partner inone of the speies among the set tested. A seond exampleof a group graph is shown in Fig. 4.
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Active SykFigure 4: A group of hemial speies.Formally, a hemial speies represented by graph X isa member of a group represented by group graph G, if andonly if there is a subgraph of X that is isomorphi toG whenthe internal states are removed from the labels of nodes inX that have unspei�ed internal states in G. Thus, theproblem of identifying whih speies belong to a group isredued to the problem of determining whether X ontainssubgraphs isomorphi to the group graph G, whih is knownas the subgraph isomorphism problem. A well-known algo-rithm for �nding isomorphi subgraphs is the method ofUllmann [18℄.
2.5 Reaction RulesReation rules are graph rewriting rules that an be usedto generate hemial reations from a list of hemial speies

by identifying sets of reatants and de�ning how reatantsare transformed into produts. Eah rule is omprised oftwo sets of group graphs (a set of graphs representing rea-tants and a set of graphs representing produts), an arrowpointing from reatants to produts, and a rate law. Therate law in general an be any funtion of the propertiesof reatants and produts, e.g., k[A℄[B℄, where k is a rateonstant and [A℄ and [B℄ are the onentrations of reatantsin a biomoleular reation. An example of a reation ruleis shown in Fig. 1. The bidiretional arrows indiate thatthe rule is to be applied in both the forward and reversediretions.The �rst step in applying a reation rule to a set of hem-ial speies is to identify the group of speies orrespondingto eah reatant group graph, as desribed in the previ-ous setion. Next, for eah ombination of reatant speiesdrawn from these groups, the rule is applied by replaingthe subgraphs of the reatant speies mathing the groupgraphs of reatants with the orresponding group graphs ofproduts to de�ne the produts. In arrying out this re-plaement, omponent states that are not spei�ed in theprodut group graphs are not hanged. This proess of re-plaing subgraphs of reatants with produt group graphs isa graph rewriting step [19℄, i.e., a ut-and-paste operation(or in some ases, equivalently, a relabeling operation) thattransforms reatant graphs in produt graphs. The produtspeies that result from graph rewriting are then hekedagainst the urrent list of hemial speies and added to thelist if they are not already present. To failitate this ompar-ison, graphs must be assigned a unique label that does notdepend on the order of omponents, graph partitions (i.e.,moleules), or edges. Suh labels an be assigned using theanonial graph labeling sheme of MKay [20℄. Canoni-al labels are also useful for heking the generated reationagainst the list of previously generated reations to identifyoverlaps in reation rules or to prevent dupliation of rea-tions that are related beause of symmetry. An example ofappliation of a reation rule that would generate two rea-tions is shown in Fig. 1. The set of rules that generate themodel of Faeder et al. [15℄ is shown in Fig. 5. Other sets ofrules are shown in Figs. 6 and 7.
2.6 Generation of a Chemical Reaction Net

workAn initial set of hemial speies must be spei�ed as astarting point for the appliation of reation rules and thegeneration of a hemial reation network. A typial startingpoint for network generation would be the set of individualmoleules with eah omponent in its resting internal state.A seed set of initial hemial speies is shown in Fig. 3; iter-ative appliation of the rules of Fig. 5 to this set of speiesgenerates the reation network of Faeder et al. [15℄, whihontains 354 hemial speies and 3680 reations. Itera-tive appliation of reation rules an be arried out untila termination ondition is satis�ed or all possible speiesand reations are generated. An exhaustive generation ofall speies and reations aessible from the initial set is apossible termination ondition as long as the reation rulesgive rise to a �nite number of speies, but may not be desir-able in the ase of very large networks, e.g., if the numberof hemial speies ontaining a partiular moleule exeedsthe number of that kind of moleule in a ell. The rules ofFig. 6 provide an example of a rule set for whih exhaustive
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L-pYFigure 5: Graphial rule-based representation of the F�RI model.generation of all possible hemial speies and reations isimpossible. In these ases, other termination onditions areneeded. Alternatively, network generation and simulationan proeed in tandem, suh that speies and reations aregenerated on-the-y as needed [5, 21℄.
2.7 Output functionsIt is often useful to assoiate a mathematial funtion witha group of hemial speies, suh as the sum of onen-trations of all members of a group, beause experimentalobservables often orrespond to properties of ensembles ofhemial speies. A group graph and assoiated funtionan be spei�ed to alulate this sum. For example, thegroup rule in Fig. 1 ould be used to alulate the on-entration of the spei�ed protein phosphorylated on its Bdomain tyrosine, and the group rule in Fig. 4 ould be usedto alulate the onentration of reeptor-bound autophos-phorylated Syk.
3. EXAMPLES

3.1 The Fc�RI NetworkFigures 2{5 illustrate how the F�RI signaling model ofFaeder et al. [15℄ an be representated using the proposedgraphial onventions. This model vividly illustrates ombi-natorial omplexity. The four moleules of Fig. 2 ombinedwith the ten reation rules of Fig. 5 imply 354 hemialspeies, whih are onneted through 3680 reations. Theonnnetivity of omponents in omplexes is expliit in the

graphial representation, unlike for the string representationused in earlier work [16℄.Are all these speies and reations important? Reentwork indiates that while only a small portion of the F�RInetwork is ative for a partiular set of model parameters(onentrations and rate onstants), the ative portion de-pends on the parameter values and ativity an be shifted[22℄. Redued models an be found that reprodue predi-tions of the full model; however, the preditions of thesemodels, relative to the full model, beome inaurate whenparameter values are varied over moderate ranges. For de-tails, see [22℄. Others are also studying model redution inthe ontext of signal transdution [23℄.
3.2 LigandReceptor Aggregation with Chains

and RingsDembo and Goldstein [24℄ and Posner et al. [25℄ developeda model for bivalent ligand interation with a ell-surfae bi-valent reeptor, whih is represented in Fig. 6. The ligandis symmetri and its two sites are equivalent. The sameholds for the reeptor, whih is free to di�use in the two-dimensional membrane surfae of a ell. This model wasdeveloped to desribe ligand-reeptor binding and reeptoraggregation for the simplest type of antigen apable of aggre-gating IgE-F�RI omplexes. A omplex of IgE and F�RIan be treated as a bivalent reeptor beause the omplexis long lived and IgE antibody has two antigen-ombiningsites. This model is more physiologial than the simplerbinding model onsidered in the example of the previous



setion, whih desribes bivalent ligand binding to mono-valent reeptor. The representational onventions proposedhere make it easy to ombine the two models. The rulesof Fig. 6 simply replae reation rules 1 and 2 in Fig. 5.This simple hange results in a ombinatorial explosion inthe number of possible speies and reations. For example,there are 1854 dimeri reeptor states alone.
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3.3 Comparison with a Diagrammatic Repre

sentationFigure 7 shows two representations of a model for thephosphorylation of the retinoblastoma protein (Rb) by aylin-dependent kinase [13℄. The �rst representation is di-agrammati and drawn aording to the sheme proposed byKohn [10℄. Below, the equivalent rule-based representationis given. Both representations have an unambiguous math-ematial interpretation, and both su�er from some of thesame drawbaks. For example, both require some invest-ment of time to master, and both are mehanisti ratherthan funtional, making it diÆult to identify interationsas stimulatory or inhibitory. A disadvantage of the diagram-mati approah is the need to represent eah omplex as aseparate numbered dot, whih is problemati when the num-ber of omplexes is large. In ontrast, in the rule-based ap-proah, interations are spei�ed in the form of rules and theomplexes implied by these rules an then be identi�ed in anautomati proedure [16, 17℄. The rule-based representationis perhaps easier to follow (at least for those already familiarwith hemial kinetis), but has the drawbak that multiple

interations involving the same omponent are ontained inseparate rules1 . From the point of view of someone trying todevelop a mathematial model of the system, the rule-basedrepresentation is probably more natural and permits moreexibility and preision in the spei�ation of the reationnetwork. For example, it is possible to use reation rulesto speify how the moleular ontext of a omponent a�etsthe rate at whih a reation takes plae, whereas ontext isdiÆult to represent in the diagrammati sheme. We haveadded boldfaed numbers to the map in Fig. 7 to illustratehow the two representations might be ombined, suh thatreation rules are used to annotate the arrows of a diagram-mati interation map. This type of annotation might helpto improve the larity of both maps and rules and resolveambiguities that often arise in maps by attahing a preisemathematial desription to their arrows.
4. CONCLUSIONSA rule-based representation sheme is omprehensible andpreise in ertain senses. It is omprehensible in that the in-formation needed to speify or interpret a model is the typeof information often available about a system, knowledgeof modular protein interations. In our experiene, thereis usually a lose orrespondene between the protein inter-ations in a system and the reation rules needed or usedto model the system. Importantly, the number of reationrules needed to represent a system is related to the num-ber of omponents in the system, whih in general is farless than the number of possible hemial speies and rea-tions. Comprehensibility, of ourse, depends on the abilityto read a list of reation rules. A ombination of rules anddiagrammati interation maps is probably more readablethan either type of representation alone. The method ofrepresentation is preise in that all the hemial speies andreations implied by spei�ed protein interations, in theform of rules, are onsidered. However, when a reationrule is introdued, a lass of reations is de�ned, and withinthis lass, the rate of a reation is sensitive to only spe-i�ed aspets of moleular ontext and there is a risk thatritial details might be overlooked. Nevertheless, this sim-pliation seems like a good starting point for an iterativeyle of model testing and re�nement when one desires toinorporate detail at the level of protein sites and domains.We were inspired to use graphs and graph rewriting rulesto represent signal-transdution systems by the use of graphsand graph rewriting rules to model other types of systems[26, 27, 28℄. The advane allowed by the onventions in-trodued here, relative to earlier rule-based representation[16℄, is the ability to trak the onnetivity of omponentsin omplexes systematially and expliitly. This ability isimportant in part beause of the ompliated polymer-likeaggregates that an form through interations among pro-teins that ontain multiple sites of interation (Fig. 6) [5℄.It is also important if one wishes to adjust the rates of sig-naling reations based on the stereohemial properties ofreatants. For example, one might wish to make the rateof a reation depend on the distane between an enzymeand a substrate within a omplex, where distane might be1Kitano [12℄ has proposed a �x to this problem: proess di-agrams, whih eah represent a sequene of reation events.However, multiple proess diagrams are needed to aountfor all possible routes through a branhed reation network.



measured by the number of edges onneting the enzymeand substrate. The ost of expliitly traking the onne-tivity of omponents is the need to �nd subgraph isomor-phisms in graph rewriting steps. Straightforward algorithmsexist for �nding subgraph isomorphisms [18℄, but they anbe omputationally expensive. Fortunately, we expet thatmost problems will involve small graphs, for whih standardmethods are e�etive and feasible.The onventions introdued here might be extended inseveral ways. For example, we onsidered only bonds be-tween omponents that are a�eted by signaling (i.e., bondsthat an be formed or broken through the appliation of areation rule) and with one exeption (Fig. 7), only binaryinterations between omponents. Later, it may be onve-nient to introdue edge labels to distinguish, for example,between edges that an and annot be added or removedthrough graph rewriting. This might failitate represen-tation of the internal onnetivity of the omponents of amoleule. It may also be onvenient to introdue the on-ept of valene to failitate the representation of ternary orhigher-order interations between omponents.We have presented representational tools that, in prini-ple, an be used to develop an initial mathematial modelfor any network of proteins for whih knowledge of protein-protein interations is available. This type of knowledge isnow being rapidly generated and atalogued in eletronidatabases. We believe mathematial modeling, and meth-ods of representation like the one presented here, will playan important role in determining how these interations af-fet the behavior of a ell. We note that the development oftools for representing and modeling omplex biologial sys-tems is an ative area of researh and muh work has beendone that is related to the work reported here [29, 30, 31,32℄.
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